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Linear stability analysis is applied to study the onset of convection, induced by volumetric 
source heating or cooling, in a horizontal layer occupied by a saturated porous medium. 
The source strength is assumed to vary exponentially with depth and vary with time; the 
time dependence is taken in turn to be sinusoidal or square-wave periodic, and a transient 
situation is also investigated. A vertical applied temperature gradient may also be present. 
Various combinations of thermal boundary conditions are considered. Analytical expres- 
sions that give upper bounds on an appropriate critical Rayleigh number are derived for 
each case. 
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Introduction 

This paper is directed toward two related goals. One is to model 
analytically the problem of conv,ection. in a horizontal layer of 
a saturated porous medium, induced by time-periodic heating 
by radiation incident on the upper surface. The second goal is 
to extend the study of the classical Horton-RogerssLapwood 
(HRL) problem (the onset of convection with uniform heating 
from below) toward the case of general time-dependent 
heating. 

A number of practical applications have motivated this 
investigation. Solar energy collectors [and also solar ponds 
(Hadim and Burmeister. I992)] are built using porous 
materials. Grains are frequently packed inside rectangular glass 
containers for drying or cooking by solar radiation The 
thermal insulation of flat roofs subject to solar incidence is of 
interest. The accumulation of nutrients vvithin the top levels of 
sand in shallow vvater subject to solar heating is of biological 
importance. 

There is much literature on the HRL problem [see, for 
example, Chapter 6 of Nield and Bejan (1992)]. but to the 
author’s knowledge there are few published papers concerned 
with time-dependent heating. Some of these are concerned with 
situations where the imposed surface temperature varies 
monotonically with time in an unbounded fashion. Now, 
amplification of disturbances inevitably occurs at some stage 
and the interest is in determining an onset time by which the 
growth factor has reached a specified ratio. say, 1.000. 
Caltagirone (1980) investigated the case where the lower surface 
is subject to a sudden rise of temperature: he used linear theory. 
energy-based theory. and a two-dimensional (2-D) numerical 
model. Kaviany (1984a) made a theoretical and experimental 
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investigation of a layer with a lower surface temperature 
increasing linearly with time. His second paper (1984b) involved 
both time-dependent cooling of the upper surface and uniform 
internal heating. 

Four papers have dealt with time-periodic heating. Rudraiah 
and Malashetty (1990) treated the case of a modulated applied 
temperature gradient. Chhuon and Caltagirone (1979) ex- 
amined the case where the temperature imposed on the 
boundary is time-periodic, with a nonzero mean value. They 
performed experiments and compared their observations with 
those obtained when Floquet theory was used to examine the 
stability of solutions of the ordinary differential equation 
system governing the perturbed variables, and also with 
calculations, based on linear theory applied to a “frozen” 
profile. obtained earlier by Caltagirone (1976). McKay (1992) 
was concerned with patterned ground formation as a result of 
solar radiation ground heating. Accordingly, he applied 
Floquet theory to the equations pertaining to the case where 
at the upper surface a time-periodic temperature gradient is 
specified. [He also allowed for a quadratic relationship between 
density and temperature (appropriate for icy water) and for a 
permeability varying with depth.] 

In this paper, it is assumed that, as a result of radiation 
incident from above or from a stratified distribution of heat 
producing material, there is volumetric heating whose source 
magnitude decreases exponentially with depth and oscillates 
periodically with time. In addition, a constant temperature 
difference is imposed across the layer. The stability of the 
consequent conduction solution is examined using linear 
stability analysis based on the assumption of a “frozen” basic 
temperature profile: i.e. one that varies sufficiently slowly with 
time (compared with the growth of a disturbance) so it can be 
taken as constant for the perturbation analysis. This approach, 
rather than that using Floquet theory, was chosen because the 
present interest is in whether motion results at any stage of the 
cycle, rather than whether there is net growth in the magnitude 
of a disturbance during a complete cycle. Whereas the 
Floquet-type approach is the method of choice for similar 
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problems in clear (of solid material) fluids, the frozen-profile 
approach seems to be the better one for flow in a dense porous 
medium, a consequence of the fact that the magnitude of the 
time-derivative inertial term in the momentum equation is 
usually small [see, for example, Section 1.5. I of Nield and Bejan 
(1992)]. This statement is borne out by the fact that the critical 
Rayleigh number values observed by Chhuon and Caltagirone 
(1979) were in better accord with linear theory based on a 
frozen profile than with Floquet theory. The assumption of a 
frozen profile leads to a simplified analysis in this paper. [The 
result of the assumption is that the problem treated is 
somewhat similar to that treated by Rudraiah et al. (1980. 
1982). who studied the effect of time-independent uniform 
volumetric heating on the onset of convection using a 
Brinkman model]. A further simplification results from the use 
of a relatively crude Galerkin approximation in this 
exploratory investigation, which includes a comparison of the 
results of various forms of periodic heating (sinusoidal and 
square-wave) and for various combinations of thermal 
boundary conditions. 

Basic equations 

Relative to a Cartesian frame with the :*-axis vertically 
upward, a saturated porous medium is assumed to lie between 
the planes Z* = 0 and r* = H. The Oberbeck-Boussinesq 
approximation, Darcy’s law. and local thermal equilibrium are 
assumed. Accordingly [compare Equations 6.3-6 of Nield and 
Bejan (1992)]. the governing equations for convection in a 
porous medium are taken to be as follows: 

v.v* = 0 

Cap,, iV*:‘ir* = -VP* - (kPK)V* + (‘,<I. 

(PC), ?T*:‘?t* + (~c.~)/Y*. VT* 

(1) 

(?I 

(31 

The distinctive new feature is the appearance, in the energy 
Equation 3, of a volumetric source term, time-periodic and with 
an amplitude that decays exponentially with depth below the 
upper surface. The parameters appearing are the dimensionless 
decay coefficient p, the amplitude E, the angular frequency tr), 
and the epoch time t”. (In the context of heating caused by the 
absorption of radiation, /l/H is the attenuation coefficient.) The 
epoch has been introduced because later, in the linear stability 
analysis. the basic thermal profile is frozen at its value at t = 0, 
and this is a convenient way of allowing for disturbances of 
arbitrary phase. 

The reader should distinguish between the acceleration 
coefficient c, and the dimensionless Forchheimer coefficient cF 
[see, for example, Nield and Bejan (1992, p. 9)]. The local 
acceleration term has been included because it could become 
significant at large values of w. Quadratic inertial terms have 
been excluded because only the onset of convection is treated 
in the present paper. (J. L. Lage is currently conducting a 
numerical study in which full nonlinear equations are used.) 
Because the present investigation is a pioneering one: the 
Brinkman term has been omitted for the sake of simplicity. 

The thermal boundary conditions are taken to be as follows: 

T” = To+ AT at Z* = 0; F = To at Z* = H (5) 

The boundaries are assumed to be impermeable, so 

M.* = 0 at I* = 0 and at I’* = H (61 

Dimensionless variables are now introduced, defined by the 
following: 

Lx. j‘, z) = (u*. y*. 2*)/H, v = v*H/sc,, t = t%,,ioH=. 
T = T*:T,, P = P*K/pr, (7) 

If AT # 0. then AT is the natural choice for the reference 
temperature T,. If AT = 0, then To is the appropriate choice. pr = /)oCl - ;,AT* - TJI (4) 

Notation 

L specific heat 
(‘0 inertial coefficient 
D differential operator. d, (1: 
Y gravitational acceleration 
H layer height 
4 .i, k unit Cartesian vectors 
k thermal conductivity 
K permeability 
1. m dimensionless wavenumber m the Y- and y- 

directions 
P pressure (excess over hydrostatic) 

,I, 
q volumetric heat source amplitude (Equation 3) 
Q q”‘H=]k, T, 
R qy&HT,~‘vr, 
Ra external Rayleigh number, c~y,.h: H A~?w, 
Ra, internal Rayleigh number. g;,.KH”q”‘:?vr,k, 
t time 

epoch (Equation 3) 
velocity vector (= (u, r. w)) 

t I8 

Y 
CartesIan coordinates Y. I’. I’ 

lj dimensionless decay constant (see Equation 3) 
7, dimensionless inertial coefficient 
7’ coefficient of volume expansion 

amplitude factor (see Equation 3) 
f, dimensionless temperature perturbation 
li thermal diffusitivity 
i (iR)“’ 
I’ dynamic viscosity 
\ kinematic viscosity 
I) density 
(r heat capacity ratio, (~c),,,i(~c,,)~ 
T dimensionless epoch 
(1) angular frequency 
R dimensionless angular frequency, nH2w/cr, 

Subscripts 

ii 
critical 
standard 

Y reference 

Greek Supersc~ripts 

2 dimensionless overall horizontal wavenumber perturbation 
“m thermal diffusivity. k,:(pc,),. * dimensional variables 
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The dimensionless numbers that naturally arise are as E,, = r’Ra(W,7;). F,, = (T,7;). G,i = (D7;:07;+ r27;T), 
follows: H,i = (( - D7,)T,ct;). 

i. = (i!2)‘~2, R = oH’w,r,, Q = q”‘H-? /i,7,. 

R = g~.,.KHT,:‘w,. yy = c.,pr,K<c~pH~, r = t”r,;rrH’ (8) 

Later, in the stability analysis, the combinattons Ra = RAT T 
and Ra, = :RQ arise. Because Ra, involves heating internal 
to the porous medium. it is referred to as the internal Rayleigh 
number. The usual Rayleigh-Darcy number Ra is referred to 
as the external Rayleigh number. The factor l is introduced 
to accord with the notation in Gasser and Kazimi (1976) and 
Nield and Bejan (1992. Section 6.112). 

Writing .xzI- r = ui, x2, = hi, KZi- ,,2rmI = Cj,, K,,- 1.2i = 0, 
Kl;,21ml ~0, K,,,z, = Fin, Jaj~l,2i~l = -D,i, Jzj-,,zi= Ej;. 
J 21.zt _ 1 = H,t* Kz~. 2i = - G,z, we have the matrix equation. 

K d-y = .Tu 
dr 

(18) 

The interial parameter ;‘il is very small in most circumstances. 
and it is now assumed to be zero. 

The basic (conduction) solution vh. r, is then given by the 
following: Stability results 
v,=O, r,=[r,,+Ar(l -:I] r, 

+ (Q,/i’I[(l - c’ “): + e “(I - @‘)I 
+ [,:QY”ll’ ii (jj’ - i’) sinh j.] 
x lsinh i: + z -“[sinh i( I ~ Z) - &” sinh i.]i 

(9) 

Two “conducting” (isothermal) boundaries 

Applying a first-order approximation (N = I) to the case of 
thermally conducting boundaries, we can take the following as 
trial functions: 

L4, = 7, = sin 7r: (19) 

The calculation of the matrix elements is straightforward but 
Stability analysis tedious. We find the following: 

Writing v = vhf v’, 7 = Th+ T’. P = P,+ P’. and linearizing 
I dh, I 

(E,,H,, -D,,G,,) 
the resulting equations. we obtarn the follonrng: 

V.v’ = 0 

;‘. &‘/c:( = -VP’ - v’ + R7”k 

II(j) 

(III 

?T’/?t + (iT*,il)L\.’ = VT 

Eliminating P’, and writing 

[Iv’, 7’1 = [kr(z% I). O(z, t)] exp ri1.v + i01r.l 

2 = (1’ + ,$)“2. D z isi: 

we obtain the following: 

(12) 

Il.31 

(15) 

Equations I4 and I5 must now be solved subject to appropriate 
boundary conditions. Following Caltagirone (1976) WC can 
employ the Galerkin approximation. We write the following: 

W(L, t) = 2 u,(t)w,(z) 
i= I 

(Iha) 

H(i, t) = ; h,(t)7+) 
,=I 

(l6b) 

Substituting into Equations 14 and 15, multtplying the first by 
W,(Z) and the second by Tj:). for j = I. 2. ,._. N in turn, and 
integrating with respect to L from O-1. we get the followzing: 

'ji 
da, 

dr = 
- Djia, + Ej,‘, (l7al 

F dhi 

” dt 
= H,,a, - C,,h, (1%) 

where, with (...) written fat 

I 

1 
d,-, 

0 

” 
A2 + 2x2 

[Ra - Ra, f’(&(r, T) - h(r)] 

whew 

/l/i) = 
‘(I -1’ “J 

4A’ + p2 

(20) 

(21) 

glt. :) = 1 + 14rczc[4n’ cos Q(t ~ T) + R sin Q(t - T)])/ 

(16rr’ + R2) (22) 
/l(X) zz (A? + r2)':z' (23) 
Thus. a disturbance will grow exponentially with time at t = 0 if 

Ra - Ra,.j’(ji)<j(O. T) > h(r )  (24) 

As the wave number x varies, h(r) attains its minimum value 
47r’. when Y. = rc[. This &iv/es the value of the critical wave 
number for the onset of instability. 

The maximum growth rate of a disturbance is attained when 
~(0, T) is at its minimum value. As T varies. this is attained when 

T = Q I [Z - tan-’ (0:47-r’)] (25) 

and the minimum value of sj(O, T) is 1 - 4n2c(16n2+ Q2)-ri2. 
The critical value of T corresponds to t = 0 being the instant 
in the heating cycle when the heating is a minimum (i.e.. the 
cooling is a maximum). This is in accord with expectations, 
because the upper portion of the layer is being cooled (or 
heated) volumetrically more than the lower portion. 

As R increases from zero to infinity, the minimum value of 
c/(0, T) increases from 1 - E to I, and so the stabilizing effect of 
the volumetric heating increases accordingly. Thus, it is the 
low-frequency heating that gives rise to the most unstable 
situation. 

It follows that the criterion for instability is that 

Ra + Ra, f‘(jI)[4n’c( 167r’ + R’)- r ’ ~ I] > 4rc2 (26) 
For the case Ra, = 0, this result reduces to the well-known fact 
that Ra, = 471’ for the HRL problem. 

The value of the function ,f(fi) increases from zero (when fl 
is zero) to the maximum value 0.402 (when b = 2.36) and then 
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decreases monotonically to ~cro (as /i 4 x ). The fact that 
,f’(O) = 0 means that the effect of uniform volumetric heating 
does not enter the the stability problem at the first-order 
approximation; it does enter at the second order. Consequently, 
at small Ra,, the effect is proportlonal to Raf. This is in accord 
with the computations of Gasser and Kazimi (1976) for 
spatially uniform, time-independent volumetric heating. 

Bottom boundary “conducting ” (isotemperature), 
top boundary “insulating” (isoflux) 

In place of Equation 5, the thermal boundary conditions arc 
now taken to be T* = T, at :* = 0. iT* ?z* = 0 at Z* = II. 
The dimensionless conduction profile is given by the following: 

Th = T,,:T, + [QF ‘j /j*]#& + I - c,“‘; 

+ [cQr’“” m”/(/j2 - i’) cash j.J 

L 

/I. x slnh 1.: + Cp cash ic I ~ :) ~ ~~~~~~ ‘I cash i 
i 1 

177) 

Appropriate trial functions arc now as follows: 

IV1 = sin n:. T, = sin n: 2 (28) 

After performing a considerable amount of algebra, we find 
that disturbances grow with time provided that 

Ra,jE(/i) - Fl/j. fi) cos R(t ~ T) ~ G(/i. R) sin (IIt ~ 7); 

> H(r) (29) 

where 

E(p) = [8P(7n’ + 4/P) In’ + 4/F)(9nl + 4/F)] 
x ; I ~ [3ne ” 16/G7n’ + 4/j’)]] (30) 

F(B, n, = (9n~/i:s)i[r? (n’ + 4p’W + IhR’)] 
+ [277-&(97t’ + 4[P)(Nlrr5 + lhn’)]; 
+ (9n”r~“,l6)[[iG (7i? + 4/F)lncJ + 16R’)] 
- [817c2~(97r’ + 4/I’)(Xln’+ 16R’)]; (31) 

G(/LQ, = (9n’/jR,2);[1 (n* + 4/l’)(n” + 16R*)] 
+ [3/(97r’ + 3/P)(X17r4 + IhCF)]/ 
+ (9#rmPR,4):[l’(+ + 4/i’)@’ + 16RL)] 
- [9/(9n’ + 4/P)(817T’ + IhW)]) (?‘I 

H(r) = 97r’(n2 + r’)(47t’ + x2) ‘56x’ (33) 

The critical wave number [that which minimizes H(r)] is 
2-’ zTI. 

Bottom boundary “insulating” (isoflux), top 
boundary “conducting ” (isotemperature) 

In place of Equation 5. the thermal boundary condillons are 
now taken to be as follows: 

(q-*/,‘&* = 0 at I* = 0, T* = T,, at :* = H 134) 

The conduction solution. and the stability criterion. can. in each 
case, be obtained from the precious case (Equations 27-33) by 
making the transformations I + 1 - Z. /I + -p, followed bv 
Q + -Q em”. Ra, + -Ra, em”. 

Two “insulating ” (isoflux) boundaries 

In place of Equation 5, the thermal boundary conditions arc 
now as follows: 

(7T*/(‘-* = 0 at =* = 0, H (35) 

On physical and mathematical grounds. this set of boundary 
conditions is consistent with a volumetric heat source 
distribution if, and only if, the time-average of the source term 
is zero. To have a well-posed problem, we must replace 1 + E 
P”‘~“‘. the expression within braces in Equation 3, by c 
p’* i I Also, without loss of generality, we can set E = 1; the 
effect is the same as incorporating the factor E into the definition 
of y”‘. The basic temperature distribution is then given (in place 
of Equation 9) by the following 

& = [Q&““-“/(fi2 - R’)i. sinh i.] 
x (/j cash i,- - /F@[cosh i.( I - Z) - ie!“’ - ” sinh n]) 

(36) 
Suitable trial functions are now IV, = sin IIZ, Tl = 1. In place 
of Equation 2C23. we now have the following: 

(37) 

where 

f(p) = spc1 + rr’$qn’ + /P) (38) 
g(t, T) = Lrc’ cos !2(t - 5) + R sin Q(f - 5)1/(x4 + Q*) (39) 

The most unstable situation at I = 0 is when G( --+ 0, T = 
R-‘17[ - tan ‘(C&r*)], and the condition for instability is that 

Ra, > [n”(rr2 + /1*)(n4+ R’)“‘]//j(I + e-0) (40) 

(The fact that the critical wavenumber is zero means that the 
lateral extent of a convection cell is limited only by the presence 
of lateral walls. This phenomenon, which is peculiar to the 
choice of isoflux boundary conditions, was discussed in detail 
in the appendix to Nield (1967).) 

.As /i varies, the minimum value of the right-hand side of this 
inequality is 7.?45(&+ CP)l:l, which is attained when b = 2.63; 
as R varies the minimum value of this quantity is 72.5, attained 
when R + 0. 

Square-wave time-dependent heating: steady 
state 

So far it has been assumed that the volumetric heat source 
varies sinusoidally with time. The situation with square-wave 
(on-ofT) time dependence is now investigated. The dimension- 
less temperature for the conduction state is taken to be 
given by the following: 

i-7, ,:'-,- 
~ - 

it 
* + Qe”“- “( I + ;:F(r - 5)) ir’ 

where 

1 for -7c/R<I-T<O 
F(t ~ 5) = 

- I for 0 <t-~ < 7r;R 

F(t + 2n R) = F(t) (42) 
A solution is sought subject to the following boundary 
conditions (appropriate to conducting boundaries at the same 
temperature) 

T, = 0 at I = 0, 1 (43) 

Let T,- be the solution in the interval-n/R < t - T < 0, and 
T,, bc that in the interval 0 < t - 5 < n/n. The solutions, each 
in the form of a steady-state term plus a transient term, are of 
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the following form: case leads to a more unstable situation that the corresponding 

Qc ” sinusoidal case with the same amplitude, as we might expect. 
Tb+(z. I - 5) = ~,J2 (1 + r:);(cJ” ~ I): + I - ,,Pz I , The difference tends to zero as R tends to zero, as expected. 

Y 

Periodicity requires satisfaction of the following matching 
conditions: 

Th-(Z, 0) = r,+(:. 0). r,-(2 -ii RI = 7h+(:. n,RI (451 

These imply the following: 

i$ [h,,- ~ h,, , ] sin 17x = + [h Y n k>,, ~ h,,_ E,, ‘1 sin 17x1 
I_ I 

Here E,, = exp(n’n3:R). and the last serves m Equation 46 is the 
Fourier expansion of (7 ;:Q v i i 8’) [(c” - 1 )I + I ~ c,“‘]. Thus. 

h,, + = - E,,c,,, (I + E,,I. b,, = (‘,, I 1 + E,,) (47a) 

where 

c’,, = 4cQ[(-lY’+ e-“],17n(/,~+ r7%‘) (47b) 

The conduction-state temperature distribution is given by 
Equations 44 and 47. and the periodicity rcquircment. Because 
Th+ = 0 at I = 0. I. the series in Equation 44 may bc 
differentiated term- by-term. 

The stability calculations parallel to those in subsection 7i\,o 
“rw7ducting” (isothrrr77ctl) hourdrrric~.~ may now be carried out. 
We now have Equation 30. for the cast Ra = 0. but with ~7(r. r) 
replaced by G(r. 7). where 

G(f. 7) = (48) 

I +r:- 
27: cxp[ -4rr?(I -- r,] 

I t expl -4& 0) 

for 0 < r ~ r < 7r R 

The largest growth rate for disturbances occurs at t = 0. 
when G(0, T) takes its minimum value. This occurs w*hen 
7 = 0. and the minimum value is as follows: 

G(O,O) = 1 - i: tanh(2n’ R) (491 

Thus, the most unstable situation occurs at the end 
of the cooling portion of the cvcle, as expected. It 
is noteworthy that G(O.0) is positjve, and so the con- 
duction state is stable for all values of Ra,, if 
n > ?rc”;tanh- ‘(cm ‘). As R varies. the most unstable 
disturbances are those for which the frequency R is small, and 
then for instability we must hav*e (: > 1. The crtterion for 
instability is that: 

Ra, > h(r)/j([l)[t: tanh(3rr3 0) - I] I501 

Because the smallest \,alue of h(r) is Irr’. the critical 
internal Rayleigh number is given by the follovving: 

Ra,, = 47r’I,f(/I)[~ tanh(2n”lR) ~ 11 (51) 

Comparison with the corresponding result for the sinusoidal 
case (Equation 26 with Ra = 0) shows that the square-wave 

Square-wave time-dependent heating : 
transient problem 

The following transient situation is now considered. Suppose 
that when I ~ 5 = -rrjfi the temperature is zero throughout 
the porous medium, and at this instant the square-wave heating 
cycle of the previous section is begun. The form of the 
conduction-state solution is still given by Equation 45. We now 
need the following Fourier expansion: 

so that 

r, i (Z, I - T) = 2 :d,,. + h,, exp[ --n2n2(t - r)]) sin nn2 
i= I 

(53) 

Here tl,, I = ( I + L)(~,,&, where c,, is given by Equation 47b. 
Because 7,-(~. -n/R) = 0 for all values of Z, we must have 

h,, = -rl,/E,. The most unstable situation is, again, at the end 
of the cooling phase; namely when r - 7 = 0. The conduction- 
state temperature distribution is then given by 

7; = i d,,-[I - E,;‘] sin 777cz 
g-1 

The critical internal Rayleigh number is now given by 

Ra,, = 4rr’:,/‘(/j)(1; - I)[ I - exp( -4rr’:R)] (54) 

For all values off: and R. this critical number is less than that 
gtven by Equation 51. Thus, the transient case gives rise to a 
more unstable situation than does the steady-state square-wave 
case. This is as expected, because in the steady-state case, the 
effect of cooling is partially offset by the heating earlier in the 
cycle. 

Discussion and conclusions 

In this paper, which is a pioneering investigation of the onset 
of convection in a porous medium induced by nonuniform 
v/olumetric heating, the author has been content to apply a 
first-order Galerkin approximation, in order to rapidly 
investigate a large parameter space (x, /j’, E. T, !& Ra, Ra,), for 
various combinations of thermal boundary conditions and 
various types of waveform for the time-periodicity. At present, 
there are no physical experimental results known to the author 
for which a precise check of the theory is possible. When some 
are available, more accurate calculations will be desirable. In 
the meantime, the present results provide a good qualitative 
picture of the stability-instability boundary. The criteria in this 
paper provide sufficient condittons for instability (i.e., upper 
bounds on the appropriate critical Rayleigh numbers), because 
they specify conditions that at least one disturbance (that 
described by the trial function chosen) grows exponentially. In 
other words. the stability domain cannot be larger than that 
delmeatcd here. 

Besides the stability criteria for the individual cases given in 
the second through the sixth sections, general results have been 
obtained. It has been demonstrated that the most unstable 
conduction-state temperature profile occurs at the end of the 
cooling phase of a period cycle if the decay parameter /I is 
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positive. that the square-wave time-periodic source leads to a 
more unstable situation than a sinusoidal time-periodic source 
of the same amplitude, and that the transient onPoR’ heating 
case leads to greater instability than the corresponding steady 
state. 
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